ABDULLAH GÜL UNIVERSITY GRADUATE SCHOOL OF ENGINEERING & SCIENCE MATERIALS SCIENCE AND MECHANICAL ENGINEERING PROGRAM COURSE DESCRIPTION AND SYLLABUS

Course Title	Code	Semester	T+L Hours	Credit	ECTS
Computational Materials Science	AMN 574	FALL-SPRING	3 + 2	3	10

Prerequisite Courses	Knowledge of lunix/unix operation system	
-------------------------	--	--

Туре	Elective
Language	English
Coordinator	Murat Durandurdu
Instructor	Murat Durandurdu
Adjunt	none
Aim	To learn the theory, methods, and applications of quantum mechanical software SIESTA for computational study of materials.
Learning Outcomes	Student will have practical experiences in calculating electronic and mechanical properties of materials, modeling amorphous materials and studying temperature/pressure induced phase transformations using a density functional code SIESTA
Course Content	Applications of Density Functional Calculations on crystals, disordered materials and nanomaterials and calculations of their physical properties

WEEKL	WEEKLY TOPICS AND PRELIMINARY STUDY						
Week	Topic	Preliminary Study					
1	Introduction to materials modeling and simulation	The relevant articles from the literature					
2	Brief review of unix/lunix, parallel computers and batch systems.	The relevant articles from the literature					
3	Density functional theory	The relevant articles from the literature					
4	Density functional theory	The relevant articles from the literature					
5	Introduction to SIESTA code	The relevant articles from the literature					
6	Crystal structure relaxation and lattice parameters	The relevant articles from the literature					
7	Calculation of electronic and mechanical properties of crystals	The relevant articles from the literature					
8	Solid-liquid phase transformation using SIESTA	The relevant articles from the literature					
9	Pressure-induced solidification of liquids	The relevant articles from the literature					
10	Modeling amorphous materials.	The relevant articles from the literature					
11	Analyses of disordered systems (amorphous and liquids)	The relevant articles from the literature					
12	Pressure-induced phase transformations	The relevant articles from the literature					
13	Modeling nanomaterials	The relevant articles from the literature					
14	Project Reports						
15	Project Reports						
16	Project Reports						

SOURCES	
Lecture Notes	Lecture notes and presentations
	D. J. Barrett, <i>Linux Pocket Guide</i> (O'Reilly, 2004).
	D. Sholl, Density Functional Theory: A Practical Introduction (Wiley, 2009).
	R. Martin, <i>Electronic structure: Basic theory and practical methods</i> (Cambridge, 2004).
Other Sources	E. Kaxiras, Atomic and Electronic Structure of Solids (Cambridge, 2003).
	J. G. Lee, Computational Materials Science: An Introduction (CRC Press, 2011).
	F. Jensen, Introduction to Computational Chemistry (Wiley, 2006).

COURSE MATERIALS SHARING			
Documents	Lectures notes are shared on the internet		
Homeworks	Students will be given one homework each week		
Exams	Project Report		

EVALUATION SYSTEM						
SEMESTER STUDY	NUMBER	CONTRIBUTION				
Homework	13	50				
Final Project	1	50				
Quiz						
SUB-TOTAL	14	100				
Contribution of Semester Study						
Contribution of Final Exam						
TOTAL	14	100				

Course Category	
Sciences and Mathematics	50%
Engineering	50%
Social Sciences	0%

RELATIONSHIPS BETWEEN LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS							
No	Dur augus Ouglifi anti-aug		Contribution Level				
INO	Program Qualifications	1	2	3	4	5	
1	Accessing knowledge, evaluating and interpreting information by doing scientific research in the field of Materials Science and Mechanical Engineering					х	
2	Ability to use science and engineering knowledge for development of new methods in Materials Science and Mechanical Engineering					x	
3	To be able to understand and analyze materials by using basic knowledge on Materials Science and Mechanical Engineering					x	
4	Design and implement analytical, modeling and experimental research					X	
	Solve and interpret the problems encountered in experimental research			x			
6	Considering scientific and ethical values during the collection and interpretation of data	x					
7	Integrating knowledge of different disciplines with the help of scientific methods, and completion and implementation of scientific knowledge using data				x		
×	To gain leadership ability and responsibility in disciplinary and interdisciplinary team works				x		
9	To be able to contribute to the solution of social, scientific and ethical problems encountered in the field of Materials Science and Mechanical Engineering		x				
10	To be able to define, interpret and create new information about the interactions					X	

between various discipline of Materials Science and Mechanical Engineering		between variou	is discipline of	Materials S	Science and	Mechanical	Engineering
--	--	----------------	------------------	-------------	-------------	------------	-------------

*Increasing from 1 to 5.

ECTS / WORK LOAD TABLE							
Activities	Number	Duration (Hours)	Total Work Load				
Course Length (includes exam weeks: 16x total course hours)	16 weeks	5	80				
Out-of-class Study Time (Pre-study, practice)	16 weeks	5	80				
Internet search, library work, literature search	16 weeks	3	48				
Presentation	3 weeks	5	15				
Homework	13 weeks	5	65				
Midterm							
Final Exam							
Total Work Load			288				
Total Work Load / 30		23	288/23				
Course ECTS Credit			10				